おまえらの数学の疑問に淡々と答えてく

おまえらの数学の疑問に淡々と答えてく

1 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:07:14.817 ID:CP5YEXZc0.net
宿題でもいいぞ

72 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:52:29.272 ID:+S/SeSmU0.net

p_n = なんちゃら
みたいな素数の規則性はあると思う?
また、それに関する予想って何かある?

24 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:15:37.168 ID:+S/SeSmU0.net

教授の専攻ごとに

代数←割と普通の人多め
幾何←変人
解析←優しい人多め

ってなるのなぜ?

85 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:01:23.605 ID:CP5YEXZc0.net

>>68
QからQにn個の代数的数、とそれらのexpを添加した体への超越次元がn以上って予想です

リンデマンの定理の超強化バージョン

40 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:26:34.334 ID:CP5YEXZc0.net

>>25
0があるせいで色んな反例作れるよね

集合界の空集合みたいなもん

どれだけの命題に「空でない〜」を枕詞につけていることか

44 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:28:07.642 ID:CP5YEXZc0.net

>>32
おれはプライベートだとテキトーだぞ
理屈っぽくないはず

109 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:16:08.167 ID:+S/SeSmU0.net

数学やってて今までで1番感動したことって何?
また、数学続けるモチベーションも教えて欲しい

106 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:14:09.040 ID:CP5YEXZc0.net

>>91
一変数は微分形式の理論があるからまるで分数かのように扱えるよ

ただ多変数だと成り立たない
例えば偏微分のチェーンルールなんかがそう

73 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:52:45.920 ID:Kr+xIGaL0.net

>>67
へぇー面白いなそれ
逆は言えないの?
(積分値が一緒なら穴の数が一緒もいえるの?)

139 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:48:18.819 ID:pLUsl8Ei0.net

というかSO(3,R)がnon-amenableってのもF_2を埋め込んで証明って感じだから有理点でも成り立つのは当たり前だったな

30 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:19:37.086 ID:kYCkMSm10.net

だいぶツッコミ待ってたけどちゃんとツッコミ入れてくれるあたり本当に詳しいやつだなうん

21 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:13:32.645 ID:CP5YEXZc0.net

>>9
「必要」かどうかはそんなの立場によるでしょ
どんな界隈でも必要というと嘘だろう

0^0を1と定義すると、例えば一般化された多項定理とかの記述に便利だよね

71 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:52:04.970 ID:CP5YEXZc0.net

>>63
気にすんな
3年からのゼミ始まれば強制的に同期と話さないといけなくなる

101 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:11:03.525 ID:CP5YEXZc0.net

>>87
「多さ」の定義が「濃度」ということなら超越数の方が断然多いよ

代数的数は多項式空間に単射で埋め込めるから可算無限

3 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:07:55.334 ID:cFIhltD90.net

なんで円周率をπという文字にしたの

38 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:24:36.947 ID:CP5YEXZc0.net

>>22
統一的な判定法は未だに存在しないよ
未解決問題が多数ある

ただシャヌエルの予想というありとあらゆる代数独立性が示せるすごい予想があるからそれが解決すれば色んな超越性がわかります

証明されている中では
リンデマンの定理、ゲルフォンド・シュナイダーの定理
なんかが超越性の判定に便利

eやπ、e^π sin1 などの超越性が一発でわかる

興味ある場合は解析的整数論の分野を調べてみるといいと思う

62 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:45:33.347 ID:Kr+xIGaL0.net

プログラミングできる?

108 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:15:19.008 ID:CP5YEXZc0.net

>>92
新しいことがなんでもいいのであれば誰でも見つけられるよ
すっごいでっかい数どうし足せばいい

後半は
すごい人のエピソードを言えばいいのかな?

129 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:40:25.646 ID:pLUsl8Ei0.net

>>120
SO(3,Q)は普通に考えてnon-amenableだし多分成り立つだろ

56 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:40:50.532 ID:RI3ldDjR0.net

>>48
タオのブログ好きだから読んでみる

8 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:08:44.609 ID:CP5YEXZc0.net

>>3
ギリシャ語の円周って意味の頭文字だよ

47 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:32:22.879 ID:ITAzT2P40.net

今では必要不可欠な虚数が
出てきてから数百年数、
無用なものとして数学者から
放置されたことについて
謝罪してください

141 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:53:25.656 ID:CP5YEXZc0.net

>>139
ほえー
バナッハタルスキの証明法フワッとしか見てないからちゃんとみてくるわ

>>140
ごめんそれってどういう概念ですか?

密度(有限に制限した割合の極限)が測度になる
みたいなこと?

155 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 13:02:29.812 ID:CP5YEXZc0.net

>>151
ありがとう

13 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:10:02.196 ID:kYCkMSm10.net

数学得意なやつに聞きたいことあったけど忘れてしまった
何だと思う?

43 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:27:32.529 ID:CP5YEXZc0.net

>>26
木田センセの講義聞いたことあるけど
凄い楽しそうでした

なにかその分野の良著ありますか?

151 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:59:57.498 ID:pLUsl8Ei0.net

>>146
位相群だな

60 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:43:28.659 ID:ITAzT2P40.net

>>55
電気の本や講義では、
発表された当初は見向きもされず
数学者から数百年放置され
オイラーの公式ともに
陽の目を見たと解説されてる
冷遇されてたのは確かやと思う

119 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:26:22.254 ID:+p6jWQLn0.net

>>115
人間が10進数を使ってることと関係はない?

111 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:18:35.878 ID:CP5YEXZc0.net

>>102
マジごめん
存じ上げないです

152 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 13:00:12.032 ID:CP5YEXZc0NEWYEAR.net

>>148
情報サンクス
この休み期間で見てくるわ

104 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:13:54.859 ID:kYCkMSm10.net

IUTって数学詳しい人から見るとどういう印象なの?
素人的には胡散臭いなぁって印象を持ってしまうのだけど

54 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:40:25.572 ID:L3GbAiau0.net

>>45
恥ずかしながら名前しか知らないのでググった
なんとなくスゴそうだけど理解が追い付かなかった

ちなみに俺は準同型定理が好き

128 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:39:52.492 ID:CP5YEXZc0.net

>>127
すげえ
ありがとうございます
さすが離散群のプロだ

多次元有理数体には可換群の構造が入るからってこと?

ごめんなぜそれだと分割合同に分けられないんでしょうか

バナッハタルスキーと同様の構成だと出来ないって話?

144 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:55:29.036 ID:CP5YEXZc0.net

>>143
ありがとう
測度論も死ぬほど面白いと思うからもっと勉強しないとなー

74 :小春一番 :2022/01/03(月) 11:53:48.128 ID:JY3QJ/CH0.net

割り切れない計算式をそのままにして死ぬのってどういう気持ちなんだろうね?

61 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:44:28.937 ID:CP5YEXZc0.net

>>53
ありとあらゆるアルゴリズムがあるけど
おススメなのはガウス・ルジャンドルのアルゴリズムですね
一回の操作で倍の桁数を得ることができます

わかりやすい計算法だけど非常に時間のかかるものだと

一番有名なのはグレゴリーライプニッツ級数

π=4*(1-1/3+1/5-1/7+…)
ですね

61 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:44:28.937 ID:CP5YEXZc0.net

>>53
ありとあらゆるアルゴリズムがあるけど
おススメなのはガウス・ルジャンドルのアルゴリズムですね
一回の操作で倍の桁数を得ることができます

わかりやすい計算法だけど非常に時間のかかるものだと

一番有名なのはグレゴリーライプニッツ級数

π=4*(1-1/3+1/5-1/7+…)
ですね

32 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:20:08.985 ID:MqVGuoYWa.net

理屈っぽいって理由で振られた事ある?

133 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:43:27.320 ID:CP5YEXZc0.net

なるほど分割合同なら測度から
1=2が言えておしまいか
なーる

58 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:42:46.852 ID:CP5YEXZc0.net

>>49
角度と長さを対応させる概念だよ

51 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:37:06.497 ID:CP5YEXZc0.net

>>41
分野によって意義は違うけど
例えば工学分野なら実社会への応用上、高校数学じゃ全然足りないから勉強する必要あるよ
特にフーリエ級数、展開 ラプラス変換あたりは現実社会に恐ろしいほど応用されてるから高校数学じゃ足りない

59 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:43:01.767 ID:K5D46bbNM.net

【スレ立て依頼】
スレタイ:【画像あり】お正月の屋台の定番の「“コイツ”」←買ったぞwww
本文:コイツや

154 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 13:02:00.007 ID:lfR5OQdR0.net

眠り姫問題の違和感の理由と正解を教えてくれ

91 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:04:43.819 ID:ETU6uOmjr.net

dy/dxは分数ではない←理屈は分かるけど分数として計算すると間違う反例示せよ

ってずっと思ってるわ

50 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:34:57.912 ID:CP5YEXZc0.net

>>37
もし、0を含めて四則演算が通常通り出来ると仮定すると、
1÷0 = a
とおくと
1 = 0×a = 0 になって矛盾するからだよ

ただ上の操作はいわゆる可除性を課してるから
それを許さないような体系なら実はいくらでも0除算の流儀はあるよ

Wheel theoryとかリーマン球とか

2 :おじ乳輪様 :2022/01/03(月) 11:07:44.025 ID:G4rFnYkk0.net

1+1=?

127 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:36:58.986 ID:pLUsl8Ei0.net

>>114
「有理数全体の集合」でバナッハタルスキーは成り立たない(可換群のため)

88 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 12:03:00.309 ID:CP5YEXZc0.net

>>72
いくらでも存在するよ
そんなの
素数計量関数でググるといい
一番有名なんはウィルソンの定理使った次のやつ

n番目の素数p_nとすると

p_n=1+Σ(k=1,2^n)[{n/Σ(i=1,k)[cos^2(((i-1)!+1)π/i)]}^(1/n)]

ただし[ ]はガウス記号

37 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:24:01.561 ID:S88Jey320.net

なんで0で割ったらいけないの?

16 :以下、?ちゃんねるからVIPがお送りします:2022/01/03(月) 11:10:38.274 ID:ojrZj7/T0.net

R^4での量子ヤンーミルズ理論が存在し
質量ギャップが存在することを示せるか

ニュー速VIPカテゴリの最新記事